skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kar, Sourav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Among the series of stable closo -borate dianions, [B n H n ] 2− , the X-ray crystallographic structure of [B 7 H 7 ] 2− was determined only in 2011. To explore its chemistry and stability, we have isolated and structurally characterized two new transition metal complexes of the heptaborane, [(Cp 2 M) 2 B 9 H 11 ] (Cp = η 5 -C 5 H 5 ; M = Zr or Hf). The structures of [(Cp 2 M) 2 B 9 H 11 ] contain a pentagonal bipyramidal B 7 core, coordinated by two {Cp 2 M} and two {BH 2 } units equatorially. Structural and spectroscopic characterizations and DFT calculations show that [(Cp 2 M) 2 B 9 H 11 ] complexes are substantially more stable than the parent dianion, in either [B 7 H 7 ] 2− or ( n Bu 4 N) 2 [B 7 H 7 ]. Our theoretical study and chemical bonding analyses reveal that the surprising stability of the two new heptaborane metal complexes is due to multi-center covalent bonds related to the two exo -{Cp 2 M} units, as well as electrostatic interactions between the {Cp 2 M} units and the B 7 core. The facile syntheses of the heptaborane metal-complexes will allow further exploration of their chemistry. 
    more » « less